of sources such as agriculture, urban storm water runoff, and residential use.

4. Chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum processes, that can also come from gas stations, urban storm water runoff, agricultural and septic systems.

5. Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Lake Casitas has no industrial or urban runoff water and very few residents still live in the watershed. There is no oil, gas or mining production in our watershed.

Fluoride

Casitas does not add fluoride, but there is some fluoride in the water that is naturally occurring. This level was tested at 0.4 mg/L in the lake source during 2016. For more information on fluoride check the SWRCB Division of Drinking Water’s Fluoridation website for more information on fluoridation, oral health and current issues: http://waterboards.ca.gov/drinking_water/certification/Fluoridation.shtml

Lead and Copper

The latest results from Casitas’ lead and copper testing were below the action levels. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Casitas is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water is brown from rust, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure can be found by visiting Drinking Water Online or http://www.epa.gov/safewater/lead. Elevated levels of copper can occur when corrosive water causes leaching of copper pipes. This can be mitigated by implementing a corrosion-control plan and adds a small amount of phosphate to the water to lower the corrosivity and reduce copper leek.

Chloramine Disinfection

All public drinking water supplies are disinfected to prevent water-borne diseases. Casitas disinfects the water by adding chlorine and a small amount of ammonia to the water to form chloramines. Chloramine disinfection is approved by the SWRCB Division of Drinking Water and the US Environmental Protection Agency. Many United States and Canadian cities have used chloramines for decades to disinfect water. The Metropolitan Water District of Southern California supplies water to nearly 18 million people and has been successfully using chloramines since 1984. Chloramines reduce the level of unwanted disinfection by-products in our water. Disinfection by-products are formed when chlorine mixes with naturally occurring organic material in water. Currently, regulated disinfection by-products include trihalomethanes and haloacetic acids. Chloramines stop the formation of these by-products. Even though chlorinated water has less of a chlorine taste and odor than chlorinated water, chloramines do not pose a health hazard to the general population. Chloraminated water is safe for drinking, bathing, cooking and other normal uses. Two specific groups of people, however, do need to take special care with chloraminated water: kidney dialysis patients and tropical fish hobbyists.

Chloramines Are Safe for Plants and Swimming Pools

Chloramines will not affect the chlorine balance in your backyard swimming pool, the pH will decrease and retain algae and bacterial growth. Chloramines have no affect on plants, vegetables or fruit trees. For more information on chloramines call 805-649-2251, ext. 120.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons, e.g., persons undergoing chemotherapy, persons who have undergone organ transplants, and persons with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Your Tap Water is Safe to Drink

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB) Division of Drinking Water prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration Regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Chloramines, including bottled water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline (1-800-426-4791).

Do You Know the Source of Your Water?

Casitas Municipal Water District is supplied by a blend of ground water and surface water that is treated before it is distributed. We have developed a comprehensive program that ensures that our water meets or exceeds federal water quality standards. This program includes monitoring for more than 100 water quality parameters, annual state compliance testing, and expected compliance reviews. This program makes it possible to ensure that everyone involved with treatment of dialysis patients is alerted to the facts about chloraminated water.

Chloramines and Your Aquarium or Fishpond

Chloramines are toxic to fish or animals that use gills to breath. While chlorine will evaporate rather quickly from standing water, it may take weeks for chloramines to disappear. Thus it is necessary to dechlorinate water used for aquariums and fishponds. We suggest using a filter system or a dechlorinating agent sold at most pet stores for fresh and recently treated water aquariums and fishponds. It is to install a high-quality granular activated carbon (GAC) filter in your aquarium. The chloramine residual in water used for fish should be kept below 0.1 parts per million. Contact your local pet store or fish shop for additional assistance.

Chloramines Are Toxic to Corrosion-Control Plan and Adds Phosphate

Casitas strives to provide you with water that meets or exceeds all federal and state standards for safe water. To ensure that you receive the highest quality drinking water, we test beyond what state and federal regulations mandate. This report shows the results of our monitoring for the period of January 1 through December 31, 2016 or the most recent testing.

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo o hable con alguien que lo entienda bien. Para la información llame por favor 805-649-2251.

Board meetings are open to the public and are held on the second and fourth Wednesdays of each month at 3:00 p.m. at the district main office, 1055 Monte Avenue, Oak View, CA, 93022. For additional details on the subjects outlined here and for more information about Casitas Municipal Water District, visit us at our Web site: www.casitaswater.org, or call Susan McMahon, Water Quality Supervisor, at 805-649-2251 extension 140.

Your Tap Water Is Safe to Drink

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

Contaminants that may be present in source water include:

1. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

2. Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

3. Pesticides and herbicides that may come from a variety Continued on page 6 >
Casitas Water Quality Table 2017 (2016 Data)

Primary Health Standards

<table>
<thead>
<tr>
<th>CONSTITUENTS</th>
<th>State MCL</th>
<th>PHG-NL</th>
<th>LAKE CASITAS TREATED WATER LEVEL/AVERAGE RANGE</th>
<th>MIRA MONTE WELL LEVEL/AVERAGE RANGE</th>
<th>DISTRIBUTION SYSTEM LEVEL/AVERAGE RANGE</th>
<th>Year Tested</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td>2 NTU</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2016</td>
<td>Soil run-off</td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>> 0 positive sample/month</td>
<td>5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2016</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>E. Coli Bacteria</td>
<td>> 0 positive sample/month</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2016</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>1</td>
<td>400</td>
<td>320</td>
<td>280</td>
<td>280</td>
<td>2016</td>
<td>Run-off from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Fluoride (ppb)</td>
<td>2.0</td>
<td>1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>2016</td>
<td>Run-off from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Nitrate as N (ppm)</td>
<td>10</td>
<td>10</td>
<td>8.2</td>
<td>7.7-8.6</td>
<td>7.7-8.6</td>
<td>2016</td>
<td>Run-off from fertilizer; leaching from tanks and sewerage; erosion from natural products</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>50</td>
<td>50</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
<td>2016</td>
<td>Run-off from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Total Hardness (ppm)</td>
<td>ND</td>
<td>225</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>2016</td>
<td>Run-off from fertilizer; leaching from tanks and sewerage; erosion from natural products</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>NA</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>2016</td>
<td>Run-off from fertilizer; leaching from tanks and sewerage; erosion from natural products</td>
</tr>
</tbody>
</table>

Secondary Aesthetic Standards

<table>
<thead>
<tr>
<th>CONSTITUENTS</th>
<th>State MCL</th>
<th>PHG-NL</th>
<th>LAKE CASITAS TREATED WATER LEVEL/AVERAGE RANGE</th>
<th>MIRA MONTE WELL LEVEL/AVERAGE RANGE</th>
<th>DISTRIBUTION SYSTEM LEVEL/AVERAGE RANGE</th>
<th>Year Tested</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>2 NTU</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2016</td>
<td>Soil run-off</td>
</tr>
</tbody>
</table>

Terms Used in This Report:

- **Maximum Contaminant Level (MCL):** The highest level of a contaminant allowed in drinking water. The MCL establishes a safety limit for all sources and all populations. **Primary MCLs** are established to protect the public health. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

- **Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits anticipated from the additional treatment of the contaminant.

- **Health-based contaminant level goal (HCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. HCLGs are set for the protection of the public health by the California Environmental Protection Agency (Cal/EPD). The State Board may establish a HCLG to control microbial contaminants.

- **Maximum Residual Disinfectant Level Goal (MRDLG):** The level of a disinfecting agent allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- **Unregulated Monitoring Contaminant Rule (UCMR 3):** Unregulated Monitoring Contaminant Rule (Third round). This monitoring helps the EPA and The State Board determine whether certain contaminants occur and whether the contaminants need to be regulated.

- **Key To Table (ACRONYMS):**
 - NA: Not Applicable
 - ND: None Detected
 - H: Horizonal Detected
 - N: Not in Sample
 - NTU = Nephelometric Turbidity Unit (a measure of turbidity) ppb = Parts per billion, or nanograms per liter (ng/L)
 - ppb = Parts per million, or milligrams per liter (mg/L)
 - uS/cm = Micro Siemens per Centimeter (a measure of conductivity)
 - uS/cm = Parts per trillion, or nanograms per liter (ng/L)

- **Water Quality Table Footnotes:**
 - a) Turbidity is a measure of the cloudiness of water and is a good measure of water clarity and visual color. Levels of 1.0 NTU are good for residential drinking water, while levels of 2 NTU are good for industrial drinking water. Levels of 5 NTU are considered poor for residential use.
 - b) Total Coliform Bacteria testing indicates the presence of coliform bacteria in the water. The occurrence of total coliform bacteria may indicate the presence of enteric pathogens in the drinking water. Total coliform bacteria are used to indicate the level of contamination in drinking water. The occurrence of total coliform bacteria does not necessarily mean that enteric pathogens are present in the water. The detection of total coliform bacteria in drinking water is not an indication of a health hazard.
 - c) E. Coli Bacteria testing is performed for the purpose of detecting enteric pathogenic organisms in the water. The presence of E. Coli in the water is an indication of a potential health hazard. The detection of E. Coli in drinking water is not an indication of a health hazard.
 - d) The State allows us to monitor for some contaminants less frequently than required by regulatory action levels (RALs). This monitoring helps the EPA and The State Board determine whether certain contaminants occur and whether the contaminants need to be regulated.
 - e) Alkalinity (Total as CaCO₃ ppm): The alkalinity of water is the amount of basic material in water, generally magnesium and calcium. The cations are generally naturally occurring.
 - f) These results are below the detection limits for reporting purposes.

- **Constituents that affect taste, odor, or appearance of the drinking water:**
 - **Trihalomethanes (ppb):** By-product of drinking water disinfection
 - **Nitrate as N (ppm):** Run-off from fertilizer; leaching from tanks and sewerage; erosion from natural products
 - **Chloride (ppm):** Run-off from natural deposits; industrial wastes
 - **Total Hardness (ppm):** Run-off from fertilizer; leaching from tanks and sewerage; erosion from natural products
 - **Nitrite as N (ppm):** Run-off from fertilizer; leaching from tanks and sewerage; erosion from natural products

- **Secondary Aesthetic Standards (SDWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Water Contaminants with SDWSs do not affect the health of the MCL levels.

- **Treatment Techniques:**
 - a) Turbidity is a measure of the cloudiness of water and is a good measure of water clarity and visual color. Levels of 1.0 NTU are good for residential drinking water, while levels of 2 NTU are good for industrial drinking water. Levels of 5 NTU are considered poor for residential use.
 - b) Total Coliform Bacteria testing indicates the presence of coliform bacteria in the water. The occurrence of total coliform bacteria may indicate the presence of enteric pathogens in the drinking water. Total coliform bacteria are used to indicate the level of contamination in drinking water. The occurrence of total coliform bacteria does not necessarily mean that enteric pathogens are present in the water. The detection of total coliform bacteria in drinking water is not an indication of a health hazard.
 - c) E. Coli Bacteria testing is performed for the purpose of detecting enteric pathogenic organisms in the water. The presence of E. Coli in the water is an indication of a potential health hazard. The detection of E. Coli in drinking water is not an indication of a health hazard.
 - d) The State allows us to monitor for some contaminants less frequently than required by regulatory action levels (RALs). This monitoring helps the EPA and The State Board determine whether certain contaminants occur and whether the contaminants need to be regulated.

- **Key To Table (ACRONYMS):**
 - NA: Not Applicable
 - H: Horizonal Detected
 - N: Not in Sample
 - NTU = Nephelometric Turbidity Unit (a measure of turbidity) ppb = Parts per billion, or nanograms per liter (ng/L)
 - ppb = Parts per million, or milligrams per liter (mg/L)
 - uS/cm = Micro Siemens per Centimeter (a measure of conductivity)

- **Water Quality Table Footnotes:**
 - a) Turbidity is a measure of the cloudiness of water and is a good measure of water clarity and visual color. Levels of 1.0 NTU are good for residential drinking water, while levels of 2 NTU are good for industrial drinking water. Levels of 5 NTU are considered poor for residential use.
 - b) Total Coliform Bacteria testing indicates the presence of coliform bacteria in the water. The occurrence of total coliform bacteria may indicate the presence of enteric pathogens in the drinking water. Total coliform bacteria are used to indicate the level of contamination in drinking water. The occurrence of total coliform bacteria does not necessarily mean that enteric pathogens are present in the water. The detection of total coliform bacteria in drinking water is not an indication of a health hazard.
 - c) E. Coli Bacteria testing is performed for the purpose of detecting enteric pathogenic organisms in the water. The presence of E. Coli in the water is an indication of a potential health hazard. The detection of E. Coli in drinking water is not an indication of a health hazard.
 - d) The State allows us to monitor for some contaminants less frequently than required by regulatory action levels (RALs). This monitoring helps the EPA and The State Board determine whether certain contaminants occur and whether the contaminants need to be regulated.
 - e) Alkalinity (Total as CaCO₃ ppm): The alkalinity of water is the amount of basic material in water, generally magnesium and calcium. The cations are generally naturally occurring.
 - f) These results are below the detection limits for reporting purposes.